Expansion in matrix-weighted graphs

نویسندگان

چکیده

A matrix-weighted graph is an undirected with a k×k symmetric positive semidefinite matrix assigned to each edge. Such graphs admit natural generalizations of the Laplacian and adjacency matrices, leading generalized notion expansion. Extensions some theorems about expansion hold for graphs—in particular, analogue expander mixing lemma one half Cheeger-type inequality. These results lead definition graph, suggest tantalizing possibility families better-than-Ramanujan

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Character Expansion Methods for Matrix Models of Dually Weighted Graphs

We consider generalized one-matrix models in which external fields allow control over the coordination numbers on both the original and dual lattices. We rederive in a simple fashion a character expansion formula for these models originally due to Itzykson and Di Francesco, and then demonstrate how to take the large N limit of this expansion. The relationship to the usual matrix model resolvent...

متن کامل

NILPOTENT GRAPHS OF MATRIX ALGEBRAS

Let $R$ be a ring with unity. The undirected nilpotent graph of $R$, denoted by $Gamma_N(R)$, is a graph with vertex set ~$Z_N(R)^* = {0neq x in R | xy in N(R) for some y in R^*}$, and two distinct vertices $x$ and $y$ are adjacent if and only if $xy in N(R)$, or equivalently, $yx in N(R)$, where $N(R)$ denoted the nilpotent elements of $R$. Recently, it has been proved that if $R$ is a left A...

متن کامل

Max-Balancing Weighted Directed Graphs and Matrix Scaling

A weighted directed graph G IS a triple (V, A . g) where (V. A) IS a directed graph and g is a n arbitrary real-valued function defined on the arc set A. Let G be a strongly-connected, simple weighted directed graph. We say tha t G is max-balanced if fo r every nontrivial ~ ubset of the vertices W, the maxImum weight over arcs leaving W equals the maximum weIght over arcs entering W. We show th...

متن کامل

Ela on Spectra of Expansion Graphs and Matrix Polynomials

An expansion graph of a directed weighted graph G0 is obtained fromG0 by replacing some edges by disjoint chains. The adjacency matrix of an expansion graph is a partial linearization of a matrix polynomial with nonnegative coefficients. The spectral radii for different expansion graphs of G0 and correspondingly the spectral radii of matrix polynomials with nonnegative coefficients, which sum u...

متن کامل

On spectra of expansion graphs and matrix polynomials, II

An expansion graph of a directed weighted graph G0 is obtained fromG0 by replacing some edges by disjoint chains. The adjacency matrix of an expansion graph is a partial linearization of a matrix polynomial with nonnegative coefficients. The spectral radii for different expansion graphs of G0 and correspondingly the spectral radii of matrix polynomials with nonnegative coefficients, which sum u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2021

ISSN: ['1873-1856', '0024-3795']

DOI: https://doi.org/10.1016/j.laa.2021.08.009