Expansion in matrix-weighted graphs
نویسندگان
چکیده
A matrix-weighted graph is an undirected with a k×k symmetric positive semidefinite matrix assigned to each edge. Such graphs admit natural generalizations of the Laplacian and adjacency matrices, leading generalized notion expansion. Extensions some theorems about expansion hold for graphs—in particular, analogue expander mixing lemma one half Cheeger-type inequality. These results lead definition graph, suggest tantalizing possibility families better-than-Ramanujan
منابع مشابه
Character Expansion Methods for Matrix Models of Dually Weighted Graphs
We consider generalized one-matrix models in which external fields allow control over the coordination numbers on both the original and dual lattices. We rederive in a simple fashion a character expansion formula for these models originally due to Itzykson and Di Francesco, and then demonstrate how to take the large N limit of this expansion. The relationship to the usual matrix model resolvent...
متن کاملNILPOTENT GRAPHS OF MATRIX ALGEBRAS
Let $R$ be a ring with unity. The undirected nilpotent graph of $R$, denoted by $Gamma_N(R)$, is a graph with vertex set ~$Z_N(R)^* = {0neq x in R | xy in N(R) for some y in R^*}$, and two distinct vertices $x$ and $y$ are adjacent if and only if $xy in N(R)$, or equivalently, $yx in N(R)$, where $N(R)$ denoted the nilpotent elements of $R$. Recently, it has been proved that if $R$ is a left A...
متن کاملMax-Balancing Weighted Directed Graphs and Matrix Scaling
A weighted directed graph G IS a triple (V, A . g) where (V. A) IS a directed graph and g is a n arbitrary real-valued function defined on the arc set A. Let G be a strongly-connected, simple weighted directed graph. We say tha t G is max-balanced if fo r every nontrivial ~ ubset of the vertices W, the maxImum weight over arcs leaving W equals the maximum weIght over arcs entering W. We show th...
متن کاملEla on Spectra of Expansion Graphs and Matrix Polynomials
An expansion graph of a directed weighted graph G0 is obtained fromG0 by replacing some edges by disjoint chains. The adjacency matrix of an expansion graph is a partial linearization of a matrix polynomial with nonnegative coefficients. The spectral radii for different expansion graphs of G0 and correspondingly the spectral radii of matrix polynomials with nonnegative coefficients, which sum u...
متن کاملOn spectra of expansion graphs and matrix polynomials, II
An expansion graph of a directed weighted graph G0 is obtained fromG0 by replacing some edges by disjoint chains. The adjacency matrix of an expansion graph is a partial linearization of a matrix polynomial with nonnegative coefficients. The spectral radii for different expansion graphs of G0 and correspondingly the spectral radii of matrix polynomials with nonnegative coefficients, which sum u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2021
ISSN: ['1873-1856', '0024-3795']
DOI: https://doi.org/10.1016/j.laa.2021.08.009